23 resultados para tobacco BY-2 cells

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The ability of the CGRP antagonist BIBN4096BS to antagonize CGRP and adrenomedullin has been investigated on cell lines endogenously expressing receptors of known composition. 2. On human SK-N-MC cells (expressing human calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1)), BIBN4096BS had a pA 2 of 9.95 although the slope of the Schild plot (1.37±0.16) was significantly greater than 1. 3. On rat L6 cells (expressing rat CRLR and RAMP1), BIBN4096BS had a pA 2 of 9.25 and a Schild slope of 0.89±0.05, significantly less than 1. 4. On human Colony (Col) 29 cells, CGRP 8-37 had a significantly lower pA 2 than on SK-N-MC cells (7.34±0.19 (n=7) compared to 8.35±0.18, (n=6)). BIBN4096BS had a pA 2 of 9.98 and a Schild plot slope of 0.86±0.19 that was not significantly different from 1. At concentrations in excess of 3 nM, it was less potent on Col 29 cells than on SK-N-MC cells. 5. On Rat 2 cells, expressing rat CRLR and RAMP2, BIBN4096BS was unable to antagonize adrenomedullin at concentrations up to 10 μM. CGRP 8-37 had a pA 2 of 6.72 against adrenomedullin. 6. BIBN4096BS shows selectivity for the human CRLR/RAMP1 combination compared to the rat counterpart. It can discriminate between the CRLR/RAMP1 receptor expressed on SK-N-MC cells and the CGRP-responsive receptor expressed by the Col 29 cells used in this study. Its slow kinetics may explain its apparent 'non-competive' behaviour. At concentrations of up to 10 μM, it has no antagonist actions at the adrenomedullin, CRLR/RAMP2 receptor, unlike CGRP 8-37.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordination of the functional activities of intestinal CYP3A4 and P-gp in limiting the absorption of xenobiotics in Caco-2 cells was investigated. Growing Caco-2 cells were exposed to increasing concentrations of doxorubicin (1-2 μM) in plastic flasks to encourage a subpopulation of cells, that displayed an intrinsically higher multidrug resistance (mdr) phenotype than the parent cells, to survive and grow. Doxorubicin-exposed (hereinafter referred to as type I cells) and nonexposed Caco-2 cells (parent cells) on collagen-coated inserts were also treated with either 0 (control) or 0.25 μM 1α,25-dihydroxyvitamin D3 to promote cellular CYP3A4 expression. Increased P-gp protein expression, as detected by Western blotting, was noted in type I cells (213±54.35%) compared to that of parent cells (100±6.05%). Furthermore, they retained significantly less [3H]vincristine sulphate (p<0.05), a P-gp substrate, after efflux (272.89±11.86 fmol/mg protein) than the parent cells (381.39±61.82 fmol/mg protein). The expression of CYP3A4 in parental cells after 1α,25-dihydroxyvitamin D3 treatment was quantified to be 76.2±7.6 pmol/mg protein and comparable with that found in human jejunal enterocytes (70.0±20.0 pmol/mg protein). Type I cells, however, expressed a very low quantity of CYP3A4 both before and after the treatment that was beyond the minimum detection limit of Western blotting. Functionally, the rates of 1-hydroxylation of midazolam by CYP3A for both cell types ranged from 257.0±20.0 to 1057.0±46.0 pmol/min/mg protein. Type I cells, although having a higher P-gp expression and activity comparatively, metabolized midazolam less extensively than the parent cells. The results suggested that there were noncoordinated functional activities of intestinal CYP3A4 and P-gp in Caco-2 cells, although they both functioned independently to minimize intestinal epithelial absorption of xenobiotics. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells undergoing apoptosis in vivo are rapidly detected and cleared by phagocytes. Swift recognition and removal of apoptotic cells is important for normal tissue homeostasis and failure in the underlying clearance mechanisms has pathological consequences associated with inflammatory and auto-immune diseases. Cell cultures in vitro usually lack the capacity for removal of non-viable cells because of the absence of phagocytes and, as such, fail to emulate the healthy in vivo micro-environment from which dead cells are absent. While a key objective in cell culture is to maintain viability at maximal levels, cell death is unavoidable and non-viable cells frequently contaminate cultures in significant numbers. Here we show that the presence of apoptotic cells in monoclonal antibody-producing hybridoma cultures has markedly detrimental effects on antibody productivity. Removal of apoptotic hybridoma cells by macrophages at the time of seeding resulted in 100% improved antibody productivity that was, surprisingly to us, most pronounced late on in the cultures. Furthermore, we were able to recapitulate this effect using novel super-paramagnetic Dead-Cert Nanoparticles to remove non-viable cells simply and effectively at culture seeding. These results (1) provide direct evidence that apoptotic cells have a profound influence on their non-phagocytic neighbors in culture and (2) demonstrate the effectiveness of a simple dead-cell removal strategy for improving antibody manufacture in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of Caco-2 monolayers were compared on aluminium oxide and nitrocellulose permeable-supports. On nitrocellulose, Caco-2 cells displayed a higher rate of taurocholic acid transport than those cultured on aluminium oxide inserts. In addition, Caco-2 cells grown on these two inserts were not comparable with respect to cell morphology, cell numbers and transepithelial electrical resistance. The low adsorption potential of the aluminium oxide inserts, particularly for high molecular weight or lipophilic ligands, offers a distinct advantage over nitrocellulose inserts for drug transport studies. The carrier-mediated uptake and transport of the imino acid (L-proline) and the acidic amino acids (L-aspartate and L-glutamate) have been studied. At pH7.4, L-proline uptake is mediated via an A-system carrier. Elevated uptake and transport under acidic conditions occurs by activation of a distinct carrier population. Acidic amino acid transport is mediated via a X-AG system. The flux of baclofen, CGP40116 andCGP40117 across Caco-2 monolayers was described by passive transport. The transport of three peptides, thyrotrophin-releasing hormone, SQ29852 and cyclosporin were investigated. Thyrotrophin-releasing hormone transport acrossCaco-2 monolayers was characterised by a minor saturable (carrier-mediated,approximately 25%) pathway, superimposed onto a major non-saturable (diffusional)pathway. SQ29852 uptake into Caco-2 monolayers is described by a major saturable mechanism (Km = 0.91 mM) superimposed onto a minor passive component.However, the initial-rate of SQ29852 transport is consistent with a passive transepithelial transport mechanism. These data highlight the possibility that itsbasolateral efflux is severely retarded such that the passive paracellular transportdictates the overall transepithelial transport characteristics. In addition, modelsuitable for investigating the transepithelial transport of cyclosporin A has been developed. A modification of the conventional Caco-2 model has been developed which has a calcium-free Ap donor-solution and a Bl receiver-solution containing the minimumcalcium concentration required to maintain monolayer integrity (100 μM). The influence of calcium and magnesium on the absorption of [14C]pamidronate was evaluated by comparing its transport across the conventional and minimum calciumCaco-2 models. Ap calcium and magnesium ions retard the Ap-to-Bl flux of pamidronate across Caco-2 monolayers. The effect of self-emulsifying oleic acid-Tween 80 formulations on Caco-2monolayer integrity has been investigated. Oleic acid-Tween 80 (1 0:1) formulations produced a dose-dependent disruption of Caco-2 monolayer integrity. This disruption was related to the oleic acid content of the formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. The influence of mechanical load on pleiotrophin (PTM) and aggrecan expression by intervertebral disc (IVD) cells, and the effects of disc cell conditioned medium on endothelial cell migration was investigated. Objective. To examine possible interactions of mechanical loads and known pro- and antiangiogenic factors, which may regulate disc angiogenesis during degeneration. Summary of Background Data. Pleiotrophin expression can be influenced by mechanical stimulation and has been associated with disc vascularization. Disc aggrecan inhibits endothelial cell migration, suggesting an antiangiogenic role. A possible interplay between these factors is unknown. Methods. The influence of the respective predominant load (cyclic strain for anulus fibrosus and hydrostatic pressure for nucleus pulposus cells) on PTN and aggrecan expression by IVD cells was determined by real-time RT-PCR and Western blotting (PTN only). The effects of IVD cell conditioned medium on endothelial cell migration were analyzed in a bioassay using human microvascular endothelial (HMEC-1) cells. Results. Application of both mechanical loads resulted in significant alterations of gene expression of PTN (+67%, P = 0.004 in anulus cells; +29%, P = 0.03 in nucleus cells) and aggrecan (+42%, P = 0.03 in anulus cells, -25%, P = 0.03 in nucleus cells). These effects depended on the cell type, the applied load, and timescale. Conditioned media of nucleus pulposus cells enhanced HMEC-1 migration, but this effect was diminished after 2.5 MPa hydrostatic pressure, when aggrecan expression was diminished, but not 0.25 MPa, when expression levels were unchanged. Conclusion. Mechanical loading influences PTN expression by human IVD cells. Conditioned media from nucleus pulposus cell cultures stimulated HMEC-1 endothelial cell migration. This study demonstrates that the influence of mechanical loads on vascularization of the human IVD is likely to be complex and does not correlate simply with altered expression of known pro- and antiangiogenic factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The passage number and origin of two populations of Caco-2 cells influence their enterocyte-like characteristics. Caco-2 cells of passage number >90 from Novartis pharmaceutical company possess higher levels of expression of alkaline phosphatase and P-glycoprotein and a greater cellular uptake of Gly-1.-Pro than those of passage number <40 from the American Type Tissue Culture collection. High P-gp expressing Caco-2 cells have been developed through stepwise selection of the cells with doxonibicin. This newly-developed cell line (hereafter referred to as Type I) possesses approximately twice as much P-gp protein than non-exposed cells, restricts the transepithelial transport of vincristine in the apical-to-basolateral direction whilst facilitating its transport in the reverse direction and accumulates less vincristine than non-exposed cells. There is no apparent evidence of the co-existence of the multidrug resistance protein (MIT) in Type I cells to account for the above-listed observations. Stopping the exposure for more than 28 days decreases the P-gp protein expression in previously doxorubicin-exposed Type I Caco-2 cells and reduces the magnitude of vincristine transepithelial fluxes in both directions to the levels that are almost similar to those of non-exposed cells. Exposing Caco-2 cells to 0.25 JAM la, 25-dihydroxyvitamin D3 induces their expression of cytochrome P450 3A4 protein to the level that is equivalent to that from isolated human jejunal cells. Under the same treatment, doxorubiein-exposed (Type I) cells metabolise naidazolam poorly and less extensively compared to non-exposed cells, suggesting that there is no such co-regulation of P-gp and CYP3A4 in Caco-2 cells. However, there is evidence which suggests CYP3A metabolises mida_zolam into 1- and 4-hydroxymidazolam, the latter may possibly be a P-gp substrate and is transported extracellularly by P-gp, supporting the hypothesis of P-gp-CYP3A4 synergistic roles in keeping xenobiotics out of the body. Doxoru.bicin-exposed (Type I) cells are less effective in translocating L-proline and glycyl-L-proline across the cell mono layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The transferrin receptor (CD71) is up-regulated in duodenal biopsy samples from patients with active celiac disease and promotes retrotransport of secretory immunolglobulin A (SIgA)-gliadin complexes. We studied intestinal epithelial cell lines that overexpress CD71 to determine how interactions between SIgA and CD71 promote transepithelial transport of gliadin peptides. METHODS: We analyzed duodenal biopsy specimens from 8 adults and 1 child with active celiac disease. Caco-2 and HT29-19A epithelial cell lines were transfected with fluorescence-labeled small interfering RNAs against CD71. Interactions among IgA, CD71, and transglutaminase 2 (Tgase2) were analyzed by flow cytometry, immunoprecipitation, and confocal microscopy. Transcytosis of SIgACD71 complexes and intestinal permeability to the gliadin 3H-p3149 peptide were analyzed in polarized monolayers of Caco-2 cells. RESULTS: Using fluorescence resonance energy transfer and in situ proximity ligation assays, we observed physical interactions between SIgA and CD71 or CD71 and Tgase2 at the apical surface of enterocytes in biopsy samples and monolayers of Caco-2 cells. CD71 and Tgase2 were co-precipitated with SIgA, bound to the surface of Caco-2 cells. SIgACD71 complexes were internalized and localized in early endosomes and recycling compartments but not in lysosomes. In the presence of celiac IgA or SIgA against p3149, transport of intact 3H-p3149 increased significantly across Caco-2 monolayers; this transport was inhibited by soluble CD71 or Tgase2 inhibitors. CONCLUSIONS: Upon binding to apical CD71, SIgA (with or without gliadin peptides) enters a recycling pathway and avoids lysosomal degradation; this process allows apicalbasal transcytosis of bound peptides. This mechanism is facilitated by Tgase2 and might be involved in the pathogenesis of celiac disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Patients with rheumatoid arthritis (RA) have increased concentrations of the amino acid glutamate in synovial fluid. This study was undertaken to determine whether glutamate receptors are expressed in the synovial joint, and to determine whether activation of glutamate receptors on human synoviocytes contributes to RA disease pathology. Methods. Glutamate receptor expression was examined in tissue samples from rat knee joints and in human fibroblast-like synoviocytes (FLS). FLS from 5 RA patients and 1 normal control were used to determine whether a range of glutamate receptor antagonists influenced expression of the proinflammatory cytokine interleukin-6 (IL-6), enzymes involved in matrix degradation and cytokine processing (matrix metalloproteinase 2 [MMP-2] and MMP-9), and the inhibitors of these enzymes (tissue inhibitor of metalloproteinases 1 [TIMP-1] and TIMP-2). IL-6 concentrations were determined by enzyme-linked immunosorbent assay, MMP activity was measured by gelatin zymography, and TIMP activity was determined by reverse zymography. Fluorescence imaging of intracellular calcium concentrations in live RA FLS stimulated with specific antagonists was used to reveal functional activation of glutamate receptors that modulated IL-6 or MMP-2. Results. Ionotropic and metabotropic glutamate receptor subunit mRNA were expressed in the patella, fat pad, and meniscus of the rat knee and in human articular cartilage. Inhibition of N-methyl-D-aspartate (NMDA) receptors in RA FLS increased proMMP-2 release, whereas non-NMDA ionotropic glutamate receptor antagonists reduced IL-6 production by these cells. Stimulation with glutamate, NMDA, or kainate (KA) increased intracellular calcium concentrations in RA FLS, demonstrating functional activation of specific ionotropic glutamate receptors. Conclusion. Our findings indicate that activation of NMDA and KA glutamate receptors on human synoviocytes may contribute to joint destruction by increasing IL-6 expression. © 2007, American College of Rheumatology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo-oxygenase-2 selective inhibitor, NS-398, on a primary culture of guinea-pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase-3-like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N-Hexanoyl-D-sphingosine (C6-ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase-3-like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6-ceramide. The inhibitory effect of diclofenac on basal caspase-3-like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase-3-like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase-3-like activity in cell homogenates and also inhibited human recombinant caspase-3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea-pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bronchial epithelium is a source of both α and β chemokines and, uniquely, of secretory component (SC), the extracellular ligand-binding domain of the polymeric IgA receptor. Ig superfamily relatives of SC, such as IgG and α2-macroglobulin, bind IL-8. Therefore, we tested the hypothesis that SC binds IL-8, modifying its activity as a neutrophil chemoattractant. Primary bronchial epithelial cells were cultured under conditions to optimize SC synthesis. The chemokines IL-8, epithelial neutrophil-activating peptide-78, growth-related oncogene α, and RANTES were released constitutively by epithelial cells from both normal and asthmatic donors and detected in high m.w. complexes with SC. There were no qualitative differences in the production of SC-chemokine complexes by epithelial cells from normal or asthmatic donors, and in all cases this was the only form of chemokine detected. SC contains 15% N-linked carbohydrate, and complete deglycosylation with peptide N-glycosidase F abolished IL-8 binding. In micro-Boyden chamber assays, no IL-8-dependent neutrophil chemotactic responses to epithelial culture supernatants could be demonstrated. SC dose-dependently (IC50 ∼0.3 nM) inhibited the neutrophil chemotactic response to rIL-8 (10 nM) in micro-Boyden chamber assays and also inhibited IL-8-mediated neutrophil transendothelial migration. SC inhibited the binding of IL-8 to nonspecific binding sites on polycarbonate filters and endothelial cell monolayers, and therefore the formation of haptotactic gradients, without effects on IL-8 binding to specific receptors on neutrophils. The data indicate that in the airways IL-8 may be solubilized and inactivated by binding to SC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes investigations upon pseudopeptides which were conducted to improve our understanding of the fate of synthetic macromolecules in cells and to develop approaches to influence that fate. The low uptake of molecules across the external cellular membrane is the principal barrier against effective delivery of therapeutic products to within the cell structure. In nature, disruption of this membrane by amphiphilic peptides plays a central role in the pathogenesis by bacterial and toxin infections. These amphiphilic peptides contain both hydrophobic and weakly charged hydrophilic amino acid residues and upon activation they become integrated into the lipid bilayers of the extracellular or endosomal membranes. The architectures of the pseudopeptides described here were designed to display similar pH dependent membrane rupturing activity to that of peptides derived from the influenza virus hemagglutinin HA-2. This HA protein promotes fusion of the influenza virus envelope with the cell endosome membrane due to a change in conformation in response to the acidic pH of the endosome lumen (pH 5.0-6.0). The pseudopeptides were obtained by the copolymerisation of L-lysine and L-lysine ethyl-ester with various dicarboxylic acid moieties. In this way a linear polyamide comprising of alternating pendant carboxylic acids and pendant hydrophobic moieties was made. At physiological pH (pH 7.4), electrostatic repulsion of pendant anionic carboxyl groups along the polymer backbone is sufficient to overcome the intramolecular association of the hydrophobic groups resulting in an extended conformation. At low pH (typically pH 4.8) loss of charge results in increased intramolecular hydrophobic association and the polymer chain collapses to a compact conformation, leading to precipitation of the polymer. Consequently, a conformation dependent functional property could be made to respond to small changes in the environmental pH. Pseudopepides were investigated for their cytoxicity towards a well known cell line, namely C26 (colorectal adenocarcinoma) and were shown through the use of a cell viability assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) to be well tolerated by C26 cells over a range of concentrations (2-500,μg/ml) at physiological pH (pH 7.4). A modified version of a shorter 30-minute coupled enzymatic assay, the LDH (lactate dehydrogenase) assay was used to evaluate the ability of the pseudopeptides to disrupt the membrane of two different cell lines (COS-1; African green monkey, kidney and A2780; human ovarian carcinoma) at low pH (pH 5.5). The cell membrane disruption property of the pseudopeptides was successfully demonstrated for COS-I and A2780 cell lines at this pH (pH 5.5). A variety of cell lines were chosen owing to limited availability and to compare the cytotoxic action of these pH responsive psudopeptides towards normal and tumorogenic cell lines. To investigate the intracellular delivery of one of the pseudopeptides, poly (L-lysine iso-phthalamide) and its subcellular location, a Cy3 bisamine fluorophore was conjugated into its backbone, at ratios of dye:lysine of 1:20, 1:30, 1:40, 1:60 and 1:80. Native polyacrylacrylamide gel electrophoresis (PAGE) and high voltage paper electrophoresis (HVPE) studies of the polydyes were conducted and provided evidence that that the Cy3 bisamine fluorophore was conjugated into the backbone of the polymer, poly (L-lysine iso-phthalamide). The subcellular fate of the fluorescentlylabelled "polydye" (hereafter PD20) was monitored by laser scanning confocal microscopy (LSCM) in CHO (Chinese hamster ovary) cells cultured in-vitro at various pH values (pH 7.4 and 5.0). LSCM images depicting time-dependent internalisation of PD20 indicated that PD20 traversed the extracellular membrane of CHO cells cultured in-vitro within ten minutes and migrated towards the endosomal regions where the pH is in the region of 5.0 to 6.0. Nuclear localisation of PD20 was demonstrated in a subpopulation of CHO cells. A further study was completed in CHO and HepG2 (hepatocellular carcinoma) cells cultured in-vitro using a lower molecular weight polymer to demonstrate that the molecular weight of "polydye" could be tailored to attain nuclear trafficking in cells. Prospective use of this technology encompasses a method of delivering a payload into a living cell based upon the hypercoiling nature of the pseudopeptides studied in this thesis and has led to a patent application (GB0228525.2; 20(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absorption across the gastro-intestinal epithelium is via two pathways; the transcellular and paracellular pathway. Caco-2 cells, when cultured on polycarbonate filters, formed a confluent monolayer with many properties of differentiated intestinal epithelial cells, As a model of human gastro-intestinaJ tract epithelia they were used to elucidate and characterise the transepithelial transport of two protein kinase C inhibitors, N-(3-chlorophenyl)-4-[2-(3-hydroxypropylamino)-4-pyridyl]-2-pyrimidinamin (CHPP) and N-benzoyl-staurosporine (NBS), and the polypeptide, human calcitonin. Lanthanum ions are proposed as a paracellular pathway inhibitor and tested with D-mannitol permeability and transepithelial electrical resistance measurements. The effect La3+ has on the carrier-mediated transport of D-glucose and Sodium taurocholate as well as the vesicularly transcytosed horseradish peroxidase was also investigated. As expected, 2 mM apical La3+ increases transepithelial electrical resistance 1.S-fold and decreases mannitol permeability by 63.0 % ± 1.37 %. This inhibition was not repeated by other cations. Apical 2 mM La3+ was found to decrease carrier-mediated D-glucose and taurocholate permeability by only 8.7 % ± 1.6 %, 26.3 % ± 5.0 %. There was no inhibitory effect on testosterone or PEG 4000 permeability observed with La3+. However, for horseradish peroxidase and human calcitonin permeability was decreased by 98.7 % ± 11.7%, and 96.2 % ± 0.8 % respectively by 2 mM La3+. Indicating that human calcitonin could also be transported by vesicular transcytosis. The addition of 2 mM La3+ to the apical surface of Caco-2 monolayers produces a paracellular pathway inhibition. Therefore, La3+ could be a useful additional tool in delineating the transepithelial pathway of passive drug absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to investigate the physicochemical parameters which can influence drug loading within liposomes and to characterise the effect such formulations have on drug uptake and transport across in vitro epithelial barrier models. Liposomes composed of phosphatidylcholine (PC) or distearoyl phosphatidylcholine (DSPC) and cholesterol (0, 4, 8, 16 µM) were prepared and optimised in terms of drug loading using the hand-shaking method (Bangham et al., 1965). Subsequently, liposomes composed of 16 µM PC or DSPC and cholesterol (4 µM) were used to monitor hydroxybenzoate release and transport from Iiposomes. The MIT (3[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) and crystal violet assays were employed to determine toxicity of the Iiposome. formulations towards the Caco-2 cell line, employed to model the epithelial barrier in vitro. Uptake and transport of mannitol, propranolol, glutamine and digoxin was measured in the presence and absence of Iiposome formulations to establish changes in absorption resulting from the presence of lipid formulations. Incorporation of the four hydroxybenzoates was shown to be influenced by a number of factors, including liposome composition and drug conformation. Methyl hydroxybenzo.ate (MP) was incorporated into the bilayer most effectively with percentage incorporation of 68% compared to 45% for butyl hydroxybenzoate (BP), despite its increased Iipophilicity. This was attributed to the decreased packing ability of BP within the hydrocarbon core of the lipid bilayer compared to MP. Release studies also suggested that the smaller MP was more strongly incorporated within the lipid bilayer with only 8% of the incorporated solute being released after 48-hours compared to 17% in the case of BP. Model transport studies were seen to reflect drug release profiles from the liposome bilayers with significantly (p < 0.01) higher amounts of BP partitioning from the liposome compared to MP, Caco-2 cell viability was maintained above 86% in the presence of all Iiposome formulations tested indicating the liposome formulations are non-toxic towards Caco-2 cells. Paracellular (apical-to-basolateral) transport of mannitol was significantly increased in the presence of DSPC, PC / DSPC:Cholesterol (16:4 µM; 1000 µg). Glutamine uptake and transport via the carrier-mediated route was Significantly (p < 0.01) increased in the presence of PC I DSPC:Cholesterol (16:0; 16:4 µM). Digoxin apical-to-basolateral transport was significantly increased (p < 0,01) in the presence of PC / DSPC:Cholesterol (16:0; 16:4 µM); thus reducing digoxin efflux via P-glycoprotein. In contrast, PC:ChoJesterol (16:0; 16:4 µM) significantly (p < 0.01) decreased propranolol uptake via the passive transcellular route. Bi-directional transport of propranolol was significantly (p < 0,01) decreased in the presence of PC/DSPC:Cholesterol (16:0; 16:4 µM). The structure of a solute is an important determinant for the incorporation and release of a solute from liposome formulations. PC, DSPC and cholesterol liposome formulations are nontoxic towards Caco-2 cell monolayers and improved uptake and transport of mannitol, glutamine. and digoxin across Caco-2 cell monolayers; thus providing a potential alternative delivery vehicle.